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State

I Experience is a sequence of observations, actions, rewards

o1, r1, a1, o2, r2, · · · , at−1, ot , rt

I The state is a summary of experience

st = f (o1, r1, a1, o2, r2, · · · , at−1, ot , rt)

Too complex !!!

I In a fully observed environment
st = f (ot)

Too simple !!!

I State st ∈ S can be discrete or continuous
I Action at ∈ A can be discrete or continuous
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Markov Decision Process (MDP)

I Trajectory τ is sequence of states and actions

τ = (s1, a1, s2, a2, · · · , at−1, st)

I In a MDP M = {S,A,P, r}
st+1 = f (st , at)

I Environment transition distribution P : S ×A× S → R+ (a.k.a. dynamics)

p(st+1|st , at)

I Reward function r : S ×A → R
r(st , at)

I Policy π
at ∼ π(at |st)
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Expected Discounted Return

I Discount factor γ ∈ (0, 1)
I Expected Discounted Return of the Policy π

η(π) = Eτ
[∑

t=0

γtrt

]
where τ = (s0, a0, · · · , aT−1, sT ) denotes the trajectory, s0 ∼ P0(s0), at ∼ π(at |st), and
st+1 ∼ P(st+1|st , at).
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Reinforcement Learning (RL)

Reinforcement Learning: Learning policies guided by sparse rewards, e.g., win a game.
Agent chooses actions so as to maximize expected cumulative reward over a time horizon.

Agent Environment
Take
action

Reward

Observe state

Some advanced solutions in Deep RL, e.g.
DQN, REINFORCE, Actor-Critic, PPO

[Tutorial from David Silver]

Where is it successful so far?

In simulation, where we can afford a lot of
trials, easy to parallelize.

Not in many real-world systems

we cannot afford to fail;
safety concerns;
reward engineering is usually difficult.
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Demonstrations

“rather than having a human expert tune a system to achieve desired behavior, the expert can
demonstrate desired behavior and the agent can tune itself to match the demonstration.”

[Quote from Tom Mitchell.]

ICan we transfer the knowledge from demonstrations D to learn a policy or reward?

D = {τ1, · · · , τm}

IOne-life demonstration means D = {τ1}.
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Imitation Learning (IL)

Imitation Learning (a.k.a. learning from demonstrations):
Given: demonstrations, i.e., a set of state-action pairs played by an expert.
Goal: train a policy to mimic demonstrations without manual rewards.

Demonstrations

State/Action Pairs

Imitation Learning 
Algorithms

Policy Action
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Level of Supervised Information

Comparison of goal specification:

Reinforcement Learning
(Weak: no specific goals, but intermediate rewards)
Imitation Learning
(Stronger: no explicit goals and rewards, but some examples how to reach them)
Supervised Learning
(Full: explicit goals even for intermediate steps)

Imitation learning is a fusion of reinforcement learning and supervised learning:

Reinforcement 
learning

Imitation
learning

Supervised
learning
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Representative Imitation Learning methods

I Supervised learning

Behavioral Cloning (BC), totally fails in high-dimensional environments, e.g., Atari games.

I Supervised learning with iterative feedback actions

Direct Policy Learning (DPL) via Interactive Demonstrators

Data Aggregation (DAgger)

I Inverse reinforcement learning (IRL)
(Seeks a reward function that justifies the demonstration.)

Generative Adversarial Imitation Learning (GAIL)

Variational Adversarial Imitation Learning (VAIL)
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Behavior Cloning (BC)

I BC = Supervised Learning of (s, a∗)

I Learning objective:
arg min

θ
E(s,a∗)∼P∗ [L(a∗, πθ(s))]

Optimal action a∗ is not available

I Given demonstrations D = {τ1, · · · , τm} = {(si , ai )}

arg min
θ

E(si ,ai )∼D[L(ai , πθ(si ))]

Action ai is not perfect

Wrongly predicted actions lead to unseen states s /∈ D
The learned policy cannot handle unseen states (a.k.a.catastrophic failures).
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Direct Policy Learning (DPL) via Interactive Demonstrators

I DPL = Supervised Learning with interactive feedback actions

Fix D, estimate π.
arg min

θ
E(si ,ai )∼D[L(ai , πθ(si ))]

Fix π, run π to roll out Dφ = {s0, s1 · · · }
Seek expert to label actions

D = Dφ
Repeat

I Alternating optimization ⇒ Unstable learning !
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Data Aggregation (DAgger)

I DAgger = Supervised Learning with aggregation of interactive feedback actions

Fix D, estimate π.
arg min

θ
E(si ,ai )∼D[L(ai , πθ(si ))]

Fix π, run π to roll out Dπ = {s0, s1, · · · }
Seek expert/trajectory optimization to label actions

Aggregate: D ← D ∪Dπ
Repeat

I Memorize all demonstrations, but state-action pairs are still limited.
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Inverse Reinforcement Learning (IRL)

I MDP: M = {S,A,P, r}
I Given D = {τ1, · · · , τm} = {(s i0, ai0, s i1, ai1, · · · )} ∼ πE
I Goal: Learn a reward function r∗ so that

πE = arg max
π

Eπ[r∗(s, a)] or arg max
π

Eπ[r∗(s)]

Learn reward function r

Learn policy π given the learned reward function r

Compare the learned policy π with the expert policy πE

Repeat

I Model-based IRL methods require given dynamics
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Generative Adversarial Imitation Learning (GAIL)

I GAIL = GAN on (st , at).

I Turn IRL into a minimax problem with a uniform regularizer H(π) on the learned policy

min
π

max
D

Eπ[log(D(s, a))] + EπE [log(1− D(s, a))]− λH(π)

I VAIL = GAIL + Information Bottleneck regularizer

I Model-free: Both GAIL and VAIL do not model dynamics p(st+1|st , at).

I Learn the distribution of (st , at) by discriminator.

I Still assume st → at is reliable in demonstrations.

I What happen if the demonstrations are not perfect or even noisy ?
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Grand Challenge of IL methods

Existing IL methods are restricted to the basic demonstration-level performance in
imitation learning from a one-life demonstration.

Demonstration Level

Expert Level

Beyond Expert

Start

2020.06.15

In the high-dimensional environments, e.g., Atari games
Most IL methods fail to perform as good as demonstration, even with many demonstrations.

Research Question:
“Can we develop an imitation learning method that can outperform the expert from limited
demonstrations in a high-dimensional environment?”
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Generative Intrinsic Reward driven Imitation Learning (GIRIL)

Main idea:

We propose Generative Intrinsic Reward driven Imitation Learning (GIRIL), which seeks a
family of Intrinsic Reward functions that enables the agent to do Sampling-based Self-
supervised Exploration in the environment. This is critical to achieve better-than-expert
performance1.

Demonstration Level

Expert Level

Beyond Expert

Start

2020.02.05

1Here, the Demonstration-level performance is referred to the performance by a expert player until losing the
first life in a game, known as one-life demonstration; while the Expert-level performance means the one after the
expert player losing all available lives in a game. It is also known as one full-episode demonstration.
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How to create Intrinsic Rewards that the agent outperforms the Expert?

I Hand-engineered extrinsic rewards are infeasible in complex environments.

Self-supervised Intrinsic curiosity reward (Pathak, et al., ICML 2017)
⇒ explores actions that reduce the uncertainty in predicting the consequence of the states
e.g. ‖ŝt+1(at , st)− st+1‖2

2.
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How to create Intrinsic Rewards that the agent outperforms the Expert?

I Hand-engineered extrinsic rewards are infeasible in complex environments.

Self-supervised Intrinsic curiosity reward (Pathak, et al., ICML 2017)
⇒ explores actions that reduce the uncertainty in predicting the consequence of the states
e.g. ‖ŝt+1(at , st)− st+1‖2

2.

I Very limited states and actions in the trajectory of one-life demonstration.

Generate more states and actions than that of the Expert-level performance from the
distribution of state and action dynamics of an agent ⇒ Sampling-based Exploration.
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How to create Intrinsic Rewards that the agent outperforms the Expert?

I Hand-engineered extrinsic rewards are infeasible in complex environments.

Self-supervised Intrinsic curiosity reward (Pathak, et al., ICML 2017)
⇒ explores actions that reduce the uncertainty in predicting the consequence of the states
e.g. ‖ŝt+1(at , st)− st+1‖2

2.

I Very limited states and actions in the trajectory of one-life demonstration.

Generate more states and actions than that of the Expert-level performance from the
distribution of state and action dynamics of an agent ⇒ Sampling-based Exploration.

I How to reliably learn the agent’s state and action dynamics from limited demonstrations?

Infer the optimal action ât from the transition of observed state pair st and st+1.

Generate the high-fidelity next state ŝt+1 from the current state st and action at in a
virtuous cycle. (Cycle Check WHAT has been learned in MDP!)

I More reliable Intrinsic curiosity ⇒ Better performance
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Generative Intrinsic Reward Learning (GIRL)

Forward and Backward Dynamics:

A decoder pθ(st+1|z , st) for modeling the forward dynamics (state transition),

and an encoder qφ(z |st , st+1) for modeling the backward dynamics (action encoding).

Variational solution by maximizing:

L(st , st+1; θ, φ) = Eqφ(z|st ,st+1)[log pθ(st+1|z , st)]−KL(qφ(z |st , st+1)‖pθ(z |st))

− αKL(qφ(ât |st , st+1)‖πE (at |st))]
(1)

where z is the latent variable, πE (at |st) is the expert policy distribution, ât = Softmax(z) is the
transformed latent variable, α is a positive scaling weight.

The 1st part of (1), a Conditional VAE, models the forward and backward dynamics.

The forward dynamics is not precise since we use limited demonstrations.

The 2nd part of (1), the KL term, can guide the action encoding of backward dynamics.
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GIRL Model and Reward

The reward inference procedure of our reward module:
2020.06.25 reward inference 

𝑎𝑡

𝑠𝑡 𝑠𝑡+1

Ƹ𝑠𝑡+1

𝑟𝑡

ො𝑎𝑡

𝑧

෤𝑎𝑡
𝛽

decoder 𝑝𝜃

encoder 𝑞𝜙

Reward calculation:

rt = λ‖ŝt+1 − st+1‖2
2 (2)

where ŝt+1 = decoder(β ∗ at + (1− β) ∗ Softmax(z), st), ‖ · ‖2 denotes the L2 norm, and λ is a
positive scaling weight.
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GIRIL Algorithm

Algorithm 1 Generative Intrinsic Reward driven Imitation Learning (GIRIL)

1: Input: Expert demonstration data D = {(si , ai , si+1)}Ni=1.
2: Initialize policy π, encoder qφ and decoder pθ.

// GIRL
3: for e = 1, · · · ,E do
4: Sample a batch of demonstration D̃ ∼ D.
5: Train qΦ and pθ to maximize the objective (1) on D̃.
6: end for

// Policy Optimization
7: for i = 1, · · · ,MAXITER do
8: Update policy via any policy gradient method, e.g. PPO on the intrinsic reward inferred

by Eq. (2).
9: end for

10: Output: Policy π.
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Experiments and Results

Atari Games
- Character: high-dimensional state space and discrete action space;
- Data: a one-life demonstration with a short length for each game:

Demonstration Length # Lives
Game One-life Full-episode available

Space Invaders 697 750 3
Beam Rider 1,875 4,587 3

Breakout 1,577 2,301 5
Q*bert 787 1,881 4

Seaquest 562 2,252 4
Kung Fu Master 1,167 3,421 4

Continuous Control Tasks
- Character: low-dimensional state space and continuous action space;
- Data: one demonstration with a fixed length of 1,000 for each task.
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Baselines

One random agent

One supervised learning method:

Behavioral Cloning (BC)

Two state-of-the-art inverse reinforcement learning methods:

Generative Adversarial Imitation Learning (GAIL)

Variational Adversarial Imitation Learning (VAIL)

One state-of-the-art reward learning module used in exploration task:

Curiosity-driven Imitation Learning (CDIL)
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A glance of imitation performance on the Space Invaders game:

Our method GIRIL achieves a score (1,835) that is significantly better than the expert (570).

(a) GAIL (b) VAIL (c) CDIL (d) GIRIL (ours) (e) Expert

GAIL: Generative Adversarial Imitation Learning.
VAIL: Variational Adversarial Imitation Learning.
CDIL: Curiosity-driven Imitation Learning, which leverages a state-of-the-art exploration method for reward learning.
Expert: the expert demonstrator.
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Atari Games

Quantitative Results (better-than-expert performance in bold):

Expert Demonstration Imitation Learning Algorithms Random

Game Average Average GIRIL (ours) CDIL VAIL GAIL BC Average

Space Invaders 734.1 600.0 992.9 668.9 549.4 228.0 186.2 151.7
Beam Rider 2,447.7 1,332.0 3,202.3 2,556.9 2,864.1 285.5 474.7 379.4

Breakout 346.4 305.0 426.9 369.2 36.1 1.3 0.9 1.3
Q*bert 13,441.5 8,150.0 42,705.7 30,070.8 10,862.3 8,737.4 298.4 159.7

Seaquest 1,898.8 440.0 2,022.4 897.7 312.9 0.0 155.2 75.5
Kung Fu Master 23,488.5 6,500.0 23,543.6 17,291.6 24,615.9 1,324.5 44.9 413.7

Our method outperforms several baselines including a state-of-the-art curiosity-based reward
learning method (CDIL), two state-of-the-art IRL methods (GAIL & VAIL), and behavioral
cloning (BC).
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Atari Games

Average return vs. number of simulation steps on Atari games (β = 1.0).

(a) Space Invaders. (b) Beam Rider. (c) Breakout.

(d) Q*bert. (e) Seaquest. (f) Kung Fu Master.
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Atari Games

Imitation learning performance improvements of our GIRIL:

GIRIL - Xingrui Yu (AAII, UTS) Xingrui.Yu@student.uts.edu.au July 20, 2020 29 / 34



30/34

Atari Games

Parameter Analysis of our GIRIL with different β on Atari games.

(a) Space Invaders. (b) Beam Rider. (c) Breakout.

(d) Q*bert. (e) Seaquest. (f) Kung Fu Master.
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Continuous Control Tasks

Average return vs. number of simulation steps on continuous control tasks.

(a) InvertedPendulum. (b) InvertedDoublePendulum.
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Comparison with Full-episode Demonstrations

(a) Breakout. (b) Space Invaders.

(c) InvertedPendulum. (d) InvertedDoublePendulum.
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Conclusion and Future Direction

Conclusion:

We have proposed a novel reward learning module that combines an backward dynamics
model and a forward dynamics model into one generative solution.

It performs better forward state transition and backward action encoding, and therefore
improves the dynamics modeling of MDP.

Our GIRL generates a family of intrinsic rewards, enabling the agent to do sampling-based
self-supervised exploration in the environment. (Key for better-than-expert performance.)

Our GIRIL consistently outperforms the expert with only one incomplete demonstration in
the high-dimensional Atari domain.

Future Direction

An interesting topic for future investigation would be to apply our reward learning module
to a hard exploration task.
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